The Biomechanical Effect of Loading Speed on Metal-on-UHMWPE Contact Mechanics

نویسندگان

  • Radovan Zdero
  • Zahra S Bagheri
  • Mojtaba Rezaey
  • Emil H Schemitsch
  • Habiba Bougherara
چکیده

Ultra high molecular weight polyethylene (UHMWPE) is a material commonly used in total hip and knee joint replacements. Numerous studies have assessed the effect of its viscoelastic properties on phenomena such as creep, stress relaxation, and tensile stress. However, these investigations either use the complex 3D geometries of total hip and knee replacements or UHMWPE test objects on their own. No studies have directly measured the effect of vertical load application speed on the contact mechanics of a metal sphere indenting UHMWPE. To this end, a metal ball was used to apply vertical force to a series of UHMWPE flat plate specimens over a wide range of loading speeds, namely, 1, 20, 40, 60, 80, 100, and 120 mm/min. Pressure sensitive Fujifilm was placed at the interface to measure contact area. Experimental results showed that maximum contact force ranged from 3596 to 4520 N and was logarithmically related (R(2)=0.96) to loading speed. Average contact area ranged from 76.5 to 79.9 mm(2) and was linearly related (R(2)=0.56) to loading speed. Average contact stress ranged from 45.1 to 58.2 MPa and was logarithmically related (R(2)=0.95) to loading speed. All UHMWPE specimens displayed a circular area of permanent surface damage, which did not disappear with time. This study has practical implications for understanding the contact mechanics of hip and knee replacements for a variety of activities of daily living.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-speed impact behavior of two-layer similar and dissimilar metal laminate structures

Mechanical behavior of two-layer metal laminate structures under low-speed impact loading was investigated experimentally and numerically. The experimental results were just used for validation of numerical results. Then numerical modeling was used to study the behavior of metal laminates in details. The mechanical behavior of the metal laminate structures under impact loading was found to be d...

متن کامل

Surface modification of vascular endothelial growth factor-loaded silk fibroin to improve biological performance of ultra-high-molecular-weight polyethylene via promoting angiogenesis

Ultra-high-molecular-weight polyethylene (UHMWPE) has been applied in orthopedics, as the materials of joint prosthesis, artificial ligaments, and sutures due to its advantages such as high tensile strength, good wear resistance, and chemical stability. However, postoperative osteolysis induced by UHMWPE wear particles and poor bone-implant healing interface due to scarcity of osseointegration ...

متن کامل

Effect of Functional Fatigue on Landing Mechanics using Landing Error Scoring System (LESS)

One of the factors affecting jump-landing patterns is fatigue. Fatigue is an inevitable component of physical activity, hence the aim of the present study was to investigate the effect of functional fatigue on landing mechanics through Landing Error Scoring System (LESS).Fourteen male college students with a mean age of 22±2 years, weight of 68.3±7.2 kg and height of 174±4 were randomly divi...

متن کامل

Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions

Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip ...

متن کامل

Notch fatigue of ultrahigh molecular weight polyethylene (UHMWPE) used in total joint replacements.

Ultrahigh molecular weight polyethylene (UHMWPE) has remained the primary polymer used in hip, knee and shoulder replacements for over 50 years. Recent case studies have demonstrated that catastrophic fatigue fracture of the polymer can severely limit device lifetime and are often associated with stress concentration (notches) integrated into the design. This study evaluates the influence of no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014